10.15 \(f_{4}\)-ratio statistic
The branch length proportionality of the \(f_4\) statistic is useful for deriving yet another statistic, called the \(\mathbf{f_{4}}\)-ratio statistic.
As implied by its name, this simply a ratio of two different \(f_{4}\) statistics. Unlike \(D\) and \(f_{4}\), the \(f_{4}\)-ratio tells us how much Neanderthal ancestry a given individual possesses.
Calculate the \(f_{4}\)-ratio using the code block below:
f4_ratio_result <- f4ratio(data = snps,
X = pops, A = "Altai", B = "Vindija", C = "Yoruba", O = "Chimp") %>%
# convert z score to pvalue
mutate(p = 2 * pnorm(-abs(Zscore)))
f4_ratio_result
## A B X C O alpha stderr Zscore p
## 1 Altai Vindija French Yoruba Chimp 0.023774 0.006176 3.850 1.181178e-04
## 2 Altai Vindija Sardinian Yoruba Chimp 0.024468 0.006071 4.031 5.554004e-05
## 3 Altai Vindija Han Yoruba Chimp 0.022117 0.005892 3.754 1.740349e-04
## 4 Altai Vindija Papuan Yoruba Chimp 0.037311 0.005812 6.420 1.362743e-10
## 5 Altai Vindija Khomani_San Yoruba Chimp 0.003909 0.005913 0.661 5.086123e-01
## 6 Altai Vindija Mbuti Yoruba Chimp 0.000319 0.005717 0.056 9.553418e-01
## 7 Altai Vindija Dinka Yoruba Chimp -0.001500 0.005394 -0.278 7.810124e-01
For this statistic, alpha
represents the proportion of the genome whose ancestry traces to Neanderthal introgression.